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ON THE STATE OF STRESS OF AN ORTHOTROPIC ELASTIC PLANE REGION 
IN THE NEIGHBORHOOD OF A CORNER POINT* 

V.A. SHACHNEV 

By using the solutions of certain special boundary value problems, the natureofthe 
stress field features at a corner point is investigated. Theasymptoticofthe stress 
field is determined to constant accuracy in the neighborhood of the corner point,in 
particular, in the neighborhood of the terminus of a crack, a corner point of a re- 
entrant point type. As an example, there is considered the deformation of a half- 
plane with an oblique crack on the boundary. The features of stress fieldsatsmooth 
points at which external loads have singularities, or the nature of the boundary 
conditions changes, are also determined. 

The problem of corner points for an elliptic system of equations to which the 
system of statics equations of linear elasticity theory also belongs, was investi- 
gated in /l-3/, but re-entrant points were not considered. Results referring in- 
trinsically to the system of elasticity theory equations for an isotropic body were 
published in /4/. 

The results of this paper follow directly from the solutions of certain special 
problems /5/. 

1. We write the governing relationships between the displacements uj and the stresses 
P;j as fOllOWS 

ajUj = $ CZjjhkPh.k, &Uz + &Ut = 4al2l2el2 
i, =1 

where a, is the operator of differentiation with respect to the coordinate Xj,j = I,‘2 (later 
we take XI = z, 52 = !_I). 

Here the homogeneity of the relationships means that the displacement field is defined 
just to the accuracy of an elementary three-dimensional field in the form of second-orderpoly- 
nomials, or the two-dimensional state of stress is generated by a two-dimensional displace- 
ment field. 

The stresses, integral forces J'k = Jp&s (dsis the differential of the arc contourofthe 
domain n), and the displacements of the two-dimensional problem can be expressed in terms of 
two analytic functions @,,, n = 1,2 and their derivatives in the form /5/: 

(1.1) 

where z,, = z -J ~?,,y = 5 /m iy,. I',, = a, t ifi,, (f~,, > 0) are the roots of the characteristic equation 
annY t 2 (h2 L 2h.J ~2 {- azS2? = 0 where the case of equal roots is excluded. 

The functions @, are analytic in domains D,that are images of the domain D in the map- 
pings 

and the following representations are obtained /5/ 

*‘n= (- ‘)“-I s u 
v = %nPe - %* 

21,onn n XI-x1 1 
n=1,2 (1.2! 

Here S, is the Schwartz operator, recovering the function CD, 
its real part PO = jpeds, pe and up 

by the boundary value of 
are projections of the forces and displacements in two mutu- 

ally perpendicular directions determined by the slopes 8 and 8* tothe x -axis,given as functions 
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of the point 2 of the boundary of the domainD so that 

I:,,(Z)= vn(A&,), t,(8)=y,casCl- sin0, X,= (El,,COSO* f $‘e2, sinl3*)&'(8) 

The angles 0 and e*are determined as a function of the kind of rootsofthe characteristic 
equation. If yn = ip,,,then 0 = O,f3* = s,'Z or 8 ~_= n/2, e* = 0, where both cases hold. If vn m= + 

a I- ifi then 

tg 0 =-e (U2222/U,ll,)'~', tg f3* = i(~3111/U2222)'~~ 

For the purposes of the present paper it is sufficient to assume that the domain D is 

simply connected, and the unit circle or half-plane are mapped conformally in the domain D, 
by using the function f,,: &,-+z,. We then have formally 

(1.3) 

where the constant c,, has an arbitrary imaginary part, and L is the unit circle or real inter- 
val (-m, ~2). 

Let us first prove the property of the mapping A,needed later. 

Lemma. Every angle in the mapping A,, less (greater) than 3t remains less (greater) than 
n. 

hOOf. Every line with the slope 'p to the z-axis goes over in the mapping A, into a 
line whose slope q,, is defined by the formula 

%'Pn = (c&!cp+a,)Bnll B,>O (1.4) 

Then every wedge with the angle YX as the apex is mapped by using A n into a wedge with angle 
vn% which is determined, as follows from (1.4), from the formula 

ct: ('F, -I- v,n) = (ct:: (v + VX)-i- a,)b,' (1.5) 

There remains just to note that both in the mapping q- cp,and in the mapping Y-V, defined, 
respectively, by (1.4) and (1.5) formulas, the points 0, s, 2n and 0,1,2 remain fixed. There 
are also other fixed points but the lemma is proved. 

Let us consider the domain D with the angular point z,, and let us make an assumption re- 

lative to the domain boundary that the function z = Z(S) (s is the arclength of the contour of 

the domain D)has a Hdlder-continuous derivative from the left and right of z0 . Then as is 
known /6,7/, the function f that maps the unit circle conformally in a given domain, and its 

derivative have the form 

z = ,f (5) = 2" - (5 - 5")Yg (5) f' (C) == (5 - 5"Y'h (5) (1.6) 

v3t is the angle between the tangents to the contour at the point z,(O<v X< z), the functions 

g and hare differentiable in a neighborhood of the point <, = f-'(z,), and .&'(<o) # 0, h (co) I-' 

vg(gJexist in continuity. 
The linear mapping A,, does not alter the differential properties of the domain boundary 

to the left and right of the angular point, consequently it can be assumed that the represent- 

ation 
zn=f,K,,) = (5, - C,")""&Kn)? f,'K,) = (5, - C,0)"~+&(5,) 

C,o =fnl(z,o), h,(t,o) = v,g,(T,o)#() 

(1.7) 

holds for the mapping of a unit circle into the domain D, j-n the neighborhood of the corner 

point z,,~ =A&, where v, is defined by (1.5), and by virtue of the lemma is included within 

the same limits as v, i.e.,v, G (0.1) or VnE(1,2), respectively. 

With respect to pa and ua*, considered here as functions of s, we assume that they are 

H&der-continuous to the left and right of s 0, z(s,,) = z,,, where pe can have a finite discontin- 

uity at Sot a power-law singularity in S0 is achieved for t& (i.e., t&s belongstotheclass 

H*from /8/), and in the neighborhood of the point SO we give the representation 

where r>O and there exist finite unilateral derivatives Q' (so)- For P = 1 a finite discon- 

tinuity in % is allowed for ue/ . 
Introducing the notation w,,(s) = v,,(z (s)), we have $, (5, (S)) = wn (S) according to (1.3) and 
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(1.2), where the function &(s)and its reciprocal are determined by the relationship z,(S) = 
f,,(&,) on the domain boundary. Differentiating this relationship, and taking account of (l-7), 

we obtain 

CL(S) =&$ (5,-LXVY *; (5,) = s (1.9) 

Let us note that zn' (s) = A,z' (s) # 0 since 1 z’ .(s) I = 1 and det A,, = &, # 0. Taking this 
remark into account, we determine the order of the singularity of the function $,,'as L-+ go. 

We shall say that a certain quantity p has a singularity of order p as Q-+Qo if for Q 
sufficiently close to qOit is possible to determine p =(Q- q@(q) and the function a(I 
bounded in the neighborhood of Qo. For y<Owe will call the singularityofzerooruet -CL 
as 4 + Qo* 

In the neighborhood of th8 point &, we introduce the local coordinate system 5, = 5,0-i- 

pn exp (i&J, where the angle 8, is measured counter-clockwise from the tangent to the circle 
1 &,I = 1 at the point L,, so that O,< 6,,< n. In the circle itself &=2sin6, and therefore, 
d$ = 2 exp (iZS,)dS, I 

Furthermore, Z,,'(S) =&,I (&,)d%lds and therefore we have dsld6, = z,'(~,)/z,(s). According to (1.71, 
we compute 

%'(a*)== f,‘(5,)dS,ld&,= 2"n(sin 8n)V~-1exp(i(~, - I)&) h, (5,) 

and we then obtain (ds&s>O): 

arg z,' (s) = arg z,,' (6,) = (Y,, + 1) 8, + arg II, (1.10) 

We determine the nature ofthedependence of s on 6, , and therefore, on 5, intheneigh- 
borhood of the point G,o at both the left and right of this point, or equivalently, in the 
neighborhood 6, = 0 and 8, =X , respectively. 

In the neighborhood of the point 6, = 0 we represent the difference S-&,(s>sg) intheform 

S-S.=~~~ld*~=~2'n(sinn~)'~-'~~ld~~= 
0 

2vn K,rJ) hn 
% 

2; (%-tV IS 
(sin 8,JVn-'dsin 8, $ ~(sin'n 6,), 6,-+0 

0 

Summarizing, we will have as s+s,, + 0(6,-+0): 

s- s0 E '(2 sin 8,)'n 
n 

-$$&&I (1.11) 

Proceedinginananalogousmanner,we obtain exactly the same expression for So -S(s<%)in 
the neighborhood of the point 6, = n as (1.11) withthe replacement of &,'(SO + 0) by z,'(s,, - 0) 
(we consider ananalogousintegral with the limits 6, and n). Finally we conclude that s-s,, 
and s,,-s are of zero order in v,, as &+L. 

Now we show that $,,,,' has a singularity of order I- PLY,, as &,+ r,,, . To do this we con- 
sider the following limit 

where relationships from (1.9) and (1.2) are used. 
According to (1.8) and (1.111, we obtain 

lim 
&1-s&0 

(i - i&O)(l-p)v~ Q.'(S)= pu+(s0)lim(5, - SnO)(l-'l)vn(s 

pu+ (so) lim (2 sin 6, exp (i&J)(l+L)Vn 

bn+’ 

and, finally taking into account that argz,'(s, + 0) = arg h,(L,,,J according to (1.101, we obtain 

(1.12) 

Proceeding in an analogous manner as L-+ Lo - 0 and taking into account that argz,,'(s,, - 
0) = (1 + v,)n + argh,(Lo) accordingto (l.lO), we obtain 
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(1.13) 

Since 1 - pv,,< l,then the singularity for $n,'is integrable, and consequently, integra- 

tion by parts is allowable for the evaluation of 0,,'(z,) in (1.31, resulting in the improper 
integral 

cl’*’ = 
(- IF 1, (5,) d5, 

2nrtn(8) dz,, ' 
g,r, 

(1.14) 

The results obtained below follow now from the properties and the asymptotic representa- 

tion of a Cauchy type integral whose density has a weak singularity /8/. 

Theorem 1. If p < min {Y~-~,Y~-~, I} then the stress field has a singularityatthe corner 
point. 

The assertion of the theorem results from the asymptotic representation of the integral 

in (1.14) in the case p < l/v,, In this case, we have /8/ according to (1.12) and (1.13): 

where Yny,,+O as z-+z,,, 

Since 1 - p > 0, cl),' has a singularity, and then computing the stress by the first form 
from (1.1) for the principal term (Dn we see directly that all the stresses are not simultan- 
eously zero, and therefore, the stress field has a singularity. The theorem is proved. 

Let us consider two different kinds of corner points corresponding to the cases v( 1 and 
v> 1. 

Theorem 2. If the internal angle at a point on the domain boundary is less than 

fi (v < I), then the stresses at this point have a finite limit if and only if p:>l, i.e., 
when pe and z+' are piecewise-Hiilder-continuous. 

Proof. If II < 1, then p < min {VI-~, v~-~) and b y virtue of Theorem 1 the stress field 

has a singularity at the corner point. If IL>l,, then1 - k~,<l- vn and %', and hence, 

the integral in (1.14) also has a singularity of order not greater than l-v,. But sincehere 

d<,ldz, = l/f,,'has a zero of order l-v, according to (1.7), then consequently the Dn' are fin- 
ite and the theorem is proved. 

We present the asymptotic representations of the derivative for p = 1: 

~ w,’ (so - 0) wn’ (so + 0) 
II 
,= (- l)n-lexP (- $&,) 

2t, (0) Sin vnn t / an’ (S” -0) 1 - ) zn’ (8” ml- “j I 1 I- yd 

Substituting @)n' in (l.l), we obtain a representation for 11,h. 

From the finiteness of the stress for v<l the finiteness of the force on the domain 

boundary follows by virtue of the Cauchy relationship 

Pk = pkln, pkZ% (1.16) 

where (al,%) is the unit vector of the external normal to the boundary of the domain D. 

Let us note that the converse is also true: the finiteness of the stress followsfromthe 

finiteness of the force on the boundary for v< 1 . This results directly from the equili- 

brium conditions of specially isolated neighborhoods of the corner point. The result obtained 

agrees with the solution of the problem for an isotropic lens-shaped domain /9/. 
For the case v> Ithe stress field can have a singularity at the corner point even for 

finite forces on the boundary. Let us examine this case. 

2. If v>l and v,,> 1 according to the lemma, then from the condition p < liv, there 

results that p < 1 and then Theorem 1 is valid. If v, = lip for some n, then $,,I hasno sing- 

ularity. If here $,'(fm,, - 0) = $,'(LO + 0) th en Theorem 1 and the formula (1.15) are valid 

also in this case. If %'(La - O)fqn'(& i 0) for yn = lb, then the principal termin (1.15) 

acquires the factor -_~ln(z, -z,,J, and Theorem 1 holds also in this case. 

For p> liv,(n= 1,2)the functions $,,' are Holder-continuous, where %'(&,&O) = 0. By 

virtue of the Privalov-Plemelj theorem,theintegralin (1.14) hasthesamecontinuitycharacter. 

The singularity of @,,' is possible only because of the derivative dWdz,t i.e., the order is 

not greater than v, - 1 for &,+ Lo or 1 - 1/2'n for z, * Z,O. Let the asymptotic equality hold 

here for L+ Lo: 
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Then there follows from (1.14) and (1.7) 

Substituting these 
for the stresses in the 

Let us examine the 

derivatives (n = 1,2)into (l.l), we obtain asymptotic representations 
neighborhood of the corner point. 
forces on the boundary. Being given the arbitrary direction at an 

angle w to the x-axis, because of (1.16), (l.l), (1.14) and the Sokhotskii-Plemelj formula 
we obtain for the projection PO 

(2.1) 

pm = (pllyr (g - plzd (s)) cos 0) + (plzy’ (s) - pz3z’ (4) sin 0 = 2 Re $ t, (CO) on’ (2,) = 

-1 

t, (0) 

where, as mentioned in /5/, Rear, = Reu2 = Rea. Since meanwhile, *n'(L) t'(s) = Wn'(s) are real, 
we then have 

po=Reupe+ &-l)n-lRe($l,,(c,,)$) 
n=1 

Setting o = '3 here, we see that for c,, = Ithe sum is zero and hence 
1 

Po=Reup,,+-& 
c n-1 

(-l)n-lIm u.Re(1,,&)%) (2.2) 

The quantity p. is evidently finite if and only if the sum has a finite limit as S+ 

so & 0. In the case when both integrals in (2.2) differ from zero for 5, = 5,. the finiteness 
of the sum is possible only for identical orders of the singularities of the sum components. 
This latter is possible for suitable values of p. For instance, if v1 < vz and p E (va-r,vl-r), 
t;T; from (1.15) and (2.1) it follows that p should still satisfy the relationship p = (1 $ 

2 2 
Of all the possible cases of the relationship for p, let us just select the case when 

the corner point is a re-entrant point. In this case Y =2 and vl=va= 2 , where, because of 
Theorem 1, there remains to consider the case p > 'Ir. 
$,'(cno+O)=% (%I=~) for p > '12). 

For I( = '/awe ‘assume that $n( (k,,- 0) = 

According to (1.12) and (1.13), this is possible if U_ (so) = U+ (so) and 

(2.3) 

In the neighborhood of the corner point, we introduce a local coordinate system 

2 = z0 + r exp (icp), ‘p. < cp < ‘PO + 2% ‘PO = arg 2’ (so + 0) = arg g (6,) 
We then have in the neighborhood of the point z,,, 

z, = A, (z, + r exp (icp)) = zno + rk,, exp (44, k,, = 1 cos cp + y,, sin p I 

‘pm < 9, < vno + 235, vnO = 9% ho) = art3 z,’ 6% + 0) = arg g, (LO) 

cp, = Cp,(cP) is determined from (1.4). 
We obtain from the relationship (5, - &)*g,,(~,,) = rk, exp (icp,) which follows (1.7) 

(2.4) 

(2.5) 

Substituting (2.5) into (1.14), and then in (1.11, we obtain the following asymptotic re- 
lationships for the stress tensor components in a polar coordinate system: 

(2.6) 

lm = rep, rr, w; tnrO = -h cos ‘p - sin m) (yn sin cp + co9 q) 

t nTr = h, cm cp - sin cp)", tnv, = (Ynsin cp + coa W; b,, = Z” (5,) 
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It follows from (2.3) that a, are real. The quantities 0, also turn out to be real. 
If L= (-w,w), then b, are evidently real since in this case all the variables are real 

in &(C& under the integral. In the case when L is the unit circle, it follows from the 
geometric constructions that 

is,- &J-' = -& (etg b, ($) - I) 

en (8) is the angle between the chord %- E. noand the tangent at a point Cno measured counter- 
clockwise from the tangent. And since %I' (%) dQ = Wn' (s)ds,we then obtain 

bn=-+-i (~~~*~(~)-i)~~ii)~~=~~.(pO,(~)~J~(.)"' 
0 

because of the continuity of wn(s) andtheperiodicity r+(I)= ~,,(0)(1 is the length of the con- 
tour of the domain U). Therefore, & are proved to be real. 

The integral representations (2.3) agree in the nature of their dependence on r with the 
representations for cracks in an unlimited body /lo/, except here the intensity coefficients 
are determined in terms of a,, and b,. 

Let us consider the condition for finiteness of the force on the boundary for the stress 
field (2.6). Since Z'(SO -i- @)=exP(@f, then z,’ (se-f- 0) = k, (tp,,) exp (iq+& and z,' (~~-0) = & (% + 
n) exp (imm + in), k, fq+,) = I ~0s v. -I- %,sin ‘PO 1. It then follows from (2.5) that 

Substituting into (2.2) and taking into account that the b, are real, we obtain 

z 

r, lL=l 
(2.7) 

It is hence seen that the sum should be zero for the finiteness of par whereuponwehave 
(if b,,#O): 

b,=e&,b, %=Imc,J%(cp& l&01 

The constant b is determined from the solution of the problem as a whole. 

Example. We consider the deformation of a half-plane (Y>O) with a crack on the bound- 
ary. Let hn be the slope of the crack to the half-plane boundary, measured counter-clock- 
wise from the boundary, and 1 the crack length. Thenthe function mapping the half-plane Y= 
Im El>0 onto the half-plane with a crack has the form /ll/: 

z=c(~+l-h)'-~(j-?$, c=z(1--Q-*+%-h, O<h<l 

The origin here co= 0 is mapped at the end of the crack, at the point zO= Zexpjihn). The 
mapping An transfers the half-plane with the crack, inclined at an angle hn to the boundary, 

intoahalf-planewith acrackinclinedatanangle J.+c totheboundary, determinedby (1.4). Thenthe 
mappingofthe half-planeinthe new domain will be realized by the functions 

",=Cn(;,-tl-h,) I-%& -a$,> C* = In (1 - iin) -wzh--).n 
where ln=kn(An),k, from (2.4), here the origin &=I 0 is mapped int: the end of the crack znoF 
ln exp (iM0. 

In order to determine the asymptotic of the stress field in the neighborhood of the crack 
tip, we expand the function %=ftl(5n) in the neighborhood of to=0 in a power series in &: 

Comparing with (1.7) , we obtain gno= Ln erp (--i (1 -Wn) (%(i - &I))-'. Then subsituting into (2.6), 
we obtain for instance 

and the condition for finiteness cf the forces on the boundary will have the following form 
according to (2.7) 

a (- l)"-'b~Ilrlsn I/h, -:O 

Let us note that the problem of the,deformation of a half-plane with an oblique crack is 
solved in /12/ for one particular kind of load. 
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3. It is known that the stress field singularities can occur also at smooth points of 
the boundary even if the boundary data are limited, for instance, when pe and no+' atasmooth 
point of the boundary have a finite discontinuity. 
tinuity at the point S0 and since q,'(b) = W,,' 

In this case w,,'(s) has a finite discon- 
(s)h,(&,)/z,‘(s) , then the integral in (1.14) will 

have a logarithmic singularity /8/ 

cD,,‘=( - I)+1 * 
n 

x ( *J-o,’ ;syo+o) 
?l 

ln(~n(Zn) -5,0)-l- Y,o) 

where W, has a finite limit as s+sO. The stresses in (1.1) will also have the same singul- 
arity. 

If the finite discontinuity has an integral force , corresponding to a concentrated load, 

then @n has a logarithmic singularity 

(D,=(- I),-1 wn (Q - O) - wTl (Q + O) ln (5, (Z,) - Cno) + Qno 
Znit, (0) 

while the derivative Q,,', meaning the stresses, have a singularity of order one. Letusnote 
that this singularity is conserved even at the corner point. Indeed, inthis case(& - Lo)", = 

(z, - z,,)/g,,(&,) and v, In (5, - 5,0) = In (&, - Z,O) - In g, (C,), therefore 

(- I)“-’ 
kit, (0) 

wn h - 0) - w, (So + 0) 

yn Pn - Zno) -I- Y,, 

The singularities can occur for the stresses at smooth points even when a "discontinuity" 
of the nature of the boundary conditions occurs at these points. 

Let us consider the following boundary value problem for the case of the roots Y,,= t&n. 
On the section (a, b) of the boundary of the domain D let be given p1 and ~2, but AI and ~1 
are given outside [%bl , while Pk and uk’ are bounded and Holder-continuous outside the ends 
of the section. We have the following boundary value problem /5/ for the functions (Dn : 

‘Ite @,I = (- lh,, (A&,) on (a,,, bn) 

‘Ima,, = (- +l,(A,'z,,)out of Inn, b,J 

Ukn= (%?k -%kY(%-xl) 

where (a,,,&) is the image of (a, b) for the mapping A,,. Mapping Dn on a half-plane, we arrive 
at an analogous problem for @,,((zn(&)) which is solved by using the Keldysh-Sedov formula. In 
this case the solution has the form /8/: 

where cnjo'== 0,1,2) are arbitrary constants, and 6ti", tb are prototypes of the points On, baa 
This solution can have a singularity of order l/2 as cp,' and then z-z0 and the stress 

field have a singularity of order 3/2. 
A solution bounded at all ends is possible for certain constraints on the data of the 

problem. However, even in this case the singularity of the stress field can be of order l/2 
for z-20. 
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